TRANSFORMADA DE LAPLACE INVERSA Y DE DERIVADAS

TRANSFORMADA DE LAPLACE INVERSA Y DE DERIVADAS


Apunte
EDO Laplace Inversa Derivada Ejercicios

Propiedades de la transformada de Laplace

  1. Sea f(t)f(t) una función definida para t>0t>0, si:

    L[ f(x) ]=F(s)L[ g(x) ]=G(s)\mathscr{L}[~f(x)~]=F(s) \quad\land\quad \mathscr{L}[~g(x)~]=G(s) L[ c1f(x)+c2g(x) ]=c1L[ f(x) ]+c2L[ g(x) ]=c1F(s)+c2G(s)\begin{split} \mathscr{L}[~c_1\,f(x)+c_2\,g(x)~]&= c_1\,\mathscr{L}[~f(x)~]+c_2\,\mathscr{L}[~g(x)~]\\ &=c_1\,F(s)+c_2\,G(s) \end{split}
  2. Si L[ f(x) ]=F(s)\mathscr{L}[~f(x)~]=F(s), entonces para alguna constante aa

    L[ eaxf(x) ]=F(sa)\mathscr{L}[~e^{ax}f(x)~]=F(s-a)
  3. Si L[ f(x) ]=F(s)\mathscr{L}[~f(x)~]=F(s), entonces nZ+\forall \,n\in \Z^+

    L[ xnf(x) ]=(1)ndndsn[ F(s) ]\mathscr{L}[~x^{n}f(x)~]=(-1)^n \,\frac{d^n}{ds^n} \,[~F(s)~]
  4. Si L[ f(x) ]=F(s)\mathscr{L}[~f(x)~]=F(s), y si limx0f(x)x  :  x>0\displaystyle\lim_{x\to0} \frac{f(x)}{x}\;:\; x>0 existe, entonces:

    L[ 1xf(x) ]=sF(t)dt\mathscr{L}[~\frac{1}{x}\,f(x)~]=\int\limits_{s}^{\infty} F(t)\,dt
  5. Si f(x)f(x) es periódico con periodo ω\omega, esto es, f(x+ω)=f(x)f(x+\omega)=f(x), entonces:

    L[ f(x) ]=sesxf(x)dx1eωs\mathscr{L}[~f(x)~]=\cfrac{\int_{s}^{\infty} e^{-sx}f(x)\, dx}{1-e^{-\omega s}}

Transformada inversa

Sea f(t)f(t) una función definida para t>0t>0, ademas sabemos la definición de la transformada de Laplace:

L[f(t)]=F(s):=0estf(t)dt\mathscr{L}[f(t)]=F(s) :=\int\limits_{0}^{\infty} e^{-st}\,f(t)\,dt

Entonces la transformada inversa de Laplace:

L1[F(s)]=f(t)\mathscr{L}^{-1}[F(s)]=f(t)

Transformada inversa de Laplace de funciones elementales

  • L\mathscr{L} y L1\mathscr{L}^{-1} son operaciones inversas
  F(s)    f(t)=L1[F(s)]  \boxed{~~F(s)~~} \qquad\longrightarrow\qquad \boxed{~~f(t)=\mathscr{L}^{-1}[\,F(s)\,]~~} 1s1\frac{1}{s} \qquad\qquad\longrightarrow\qquad\qquad 1 1s2t\frac{1}{s^2} \qquad\qquad\longrightarrow\qquad\qquad t 2!s3t2\frac{2!}{s^3} \qquad\qquad\longrightarrow\qquad\qquad t^2 n!sn+1tn\frac{n!}{s^{n+1}} \qquad\qquad\longrightarrow\qquad\qquad t^n 1saeat\frac{1}{s-a} \qquad\qquad\longrightarrow\qquad\qquad e^{at} as2+a2sin(at)\frac{a}{s^2+a^2} \qquad\qquad\longrightarrow\qquad\qquad \sin(at) ss2+a2cos(at)\frac{s}{s^2+a^2} \qquad\qquad\longrightarrow\qquad\qquad \cos(at) as2a2sinh(at)\frac{a}{s^2-a^2} \qquad\qquad\longrightarrow\qquad\qquad \sinh(at) ss2a2cosh(at)\frac{s}{s^2-a^2} \qquad\qquad\longrightarrow\qquad\qquad \cosh(at)

Transformadas de derivadas

Si f(t)f'(t) es continua cuando t0t \geq 0, asumiendo que estf(t)0e^{-st}f(t)\rightarrow 0 cuando tt\rightarrow\infty entonces:

L[ f(t) ]=0estf(t)dt=estf(t)0+s0estf(t)dt=f(0)+sL[ f(t) ]\begin{align*} \mathscr{L}[~f'(t)~]&=\int\limits_{0}^{\infty} e^{-st}\,f'(t)\,dt\\ &=e^{-st}f(t) \Big|_{0}^\infty + s\int\limits_{0}^{\infty} e^{-st}\,f(t)\,dt\\ &=-f(0)+s\,\mathscr{L}[~f(t)~] \end{align*}

Entonces:

L[ f(t) ]=sF(s)f(0)L[ f(t) ]=s2F(s)sf(0)f(0)L[ f(t) ]=s3F(s)s2f(0)sf(0)f(0)\begin{align} \mathscr{L}[~f'(t)~]&=sF(s){\color{magenta}-f(0)} \\ \mathscr{L}[~f''(t)~]&= s^2F(s)-sf(0){\color{magenta}-f'(0)}\\ \mathscr{L}[~f'''(t)~]&=s^3F(s)-s^2f(0)-sf'(0){\color{magenta}-f''(0)}\\ \end{align}
  • Tiene una naturaleza recursiva

Teorema

L[ fn(t) ]=snF(s)sn1f(0)sn2f(0)fn1(0)\mathscr{L}[~f^n(t)~] =s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots{\color{magenta}-f^{n-1}(0)}

Sii f,f,f,,fn1f,f',f'',\dots,f^{n-1} son continuas en t0t\geq0 y de orden exponencial, y si fnf^{n} es continua por tramos en t>0t>0

Derivada de una transformada

Si L[ f(t) ]=F(s)\mathscr{L}[~f(t)~]=F(s), entonces:

L[ tf(t) ]=ddsL[ f(t) ]=dFds=F(s)\mathscr{L}[~t\,f(t)~]=-\frac{d}{ds}\mathscr{L}[~f(t)~]=-\frac{dF}{ds}=-F'(s)

Ejercicios

  1. Calcular:

    L1[4s6(s1)(s2)(s3)]\mathscr{L}^{-1}\left[ \frac{4s-6}{(s-1)(s-2)(s-3)} \right]

    Utilice fracciones parciales

Solución 🎁
  • Para:

    4s6(s1)(s2)(s3)\frac{4s-6}{(s-1)(s-2)(s-3)}
  • Se tiene:

    A(s1)+B(s2)+C(s3)\frac{A}{(s-1)}+\frac{B}{(s-2)}+\frac{C}{(s-3)}
  • Finalmente:

    L1[4s6(s1)(s2)(s3)]=et2e2t+3e3t\mathscr{L}^{-1}\left[ \frac{4s-6}{(s-1)(s-2)(s-3)} \right] = -e^t-2e^{2t}+3e^{3t}
  1. Dada:

    L[ sin(t) ]=1s2+1\mathscr{L}[~\sin(t)~]=\frac{1}{s^2+1}

    Usar transformada de la derivada para obtener L[ cos(t) ]\mathscr{L}[~\cos(t)~]

Solución 🎁
  • Sea:

    f(t)=cos(t)f(t)=\cos(t)
  • Entonces:

    f(t)=sin(t)f(0)=1{\color{magenta}f'(t)=-\sin(t)}\quad\land\quad {\color{green}f(0)=1}
  • Aplicando la transformada sobre ff':

    L[ f(t) ]=F(s)L[ sin(t) ]=sL[ cos(t) ]f(0)1L[ sin(t) ]=sL[ cos(t) ]L[ cos(t) ]=1L[ sin(t) ]s=1s(11s2+1)=1s(s2+11s2+1)=ss2+1\begin{align*} \mathscr{L}[~{\color{magenta}f'(t)}~]&=F'(s)\\ \mathscr{L}[~{\color{magenta}-\sin(t)}~] &= s\,\mathscr{L}[~\cos(t)~]\color{green}-f(0)\\ 1-\mathscr{L}[~\sin(t)~] &=s\,\mathscr{L}[~\cos(t)~] \\ \mathscr{L}[~\cos(t)~] &=\frac{1-\mathscr{L}[~\sin(t)~]}{s}\\ &=\frac{1}{s} \left( 1-\frac{1}{s^2+1} \right)\\ &=\frac{1}{s} \left( \frac{s^2+1-1}{s^2+1} \right)\\ &=\frac{s}{s^2+1} \end{align*}
  1. Encontrar:

    L[ tcos(ωt) ]\mathscr{L}[~t\,\cos(\omega t)~]

    Usar derivada de la transformada

Solución 🎁
  • Se sabe que:

    L[ cos(ωt) ]=ss2+ω2\mathscr{L}[~\cos(\omega t)~]=\frac{s}{s^2+\omega^2}
  • Entonces:

    L[ tcos(ωt) ]=dds(ss2+ω2)\mathscr{L}[~t\,\cos(\omega t)~]=-\frac{d}{ds}\left(\frac{s}{s^2+\omega^2}\right)
  • Por regla del cociente:

    L[ tcos(ωt) ]=(s2+ω2)(ddss)s(dds(s2+ω2))(s2+ω2)2=s2+ω22s2(s2+ω2)2=s2ω2(s2+ω2)2\begin{align*} \mathscr{L}[~t\,\cos(\omega t)~]&=-\frac{(s^2+\omega ^2)\left(\frac{d}{ds}s\right)-s\left(\frac{d}{ds}(s^2+\omega ^2)\right)}{\left(s^2+\omega ^2\right)^2}\\ &=\frac{s^2+\omega^2-2s^2}{(s^2+\omega^2)^2}\\ &=\frac{s^2-\omega^2}{(s^2+\omega^2)^2} \end{align*}