CONVOLUCIÓN Y FUNCIÓN ESCALÓN UNITARIO

CONVOLUCIÓN Y FUNCIÓN ESCALÓN UNITARIO


Apunte
EDO Laplace Convolución Escalón

Convolución en transformada de Laplace

Convolución:

f(x)g(x)=0xf(t) g(xt)dtf(x)*g(x)=\int_0^x f(t)~g(x-t)dt

Convolución para t. de Laplace:

L[ f(x) g(x) ]=No existe formula\mathscr{L}[~f(x)~g(x)~]=\text{No existe formula} L1[ F(s) G(s) ]=0xf(t) g(xt)dt=f(x)g(x)\mathscr{L}^{-1}[~F(s)~G(s)~]=\int_0^x f(t)~g(x-t)dt =f(x)*g(x)

Teorema de la convolución:

L[ f(x)g(x) ]=L[f(x)] L[g(x)]=F(s) G(s)\mathscr{L}[~f(x)*g(x)~]=\mathscr{L}[f(x)]~\mathscr{L}[g(x)]=F(s)~G(s)

Función escalón unitario

También conocida como función de Heaviside

u(x)={0x<01x0u(x)=\left\lbrace \begin{align*} 0 \qquad&x<0 \\ 1 \qquad&x\geq0 \end{align*}\right.

Entonces:

u(xc)={0x<c1xcu(x-c)=\left\lbrace \begin{align*} 0 \qquad&x<c \\ 1 \qquad&x\geq c \end{align*}\right.

Teorema:

L[u(xc)]=1secs\mathscr{L}[u(x-c)]=\frac{1}{s}e^{-cs}

Traslaciones

u(xc) f(xc)={0      x<cf(xc)xcu(x-c)~f(x-c)=\left\lbrace \begin{align*} 0~~~~~~ \qquad&x<c \\ f(x-c) \qquad&x\geq c \end{align*}\right.

Traslación o desplazamiento de la función f(x)f(x) por cc unidades en la dirección xx positiva

Teorema:

L[ u(xc) f(xc) ]=ecsF(s)F(s)=L[ f(x) ]\mathscr{L}[~u(x-c)~f(x-c)~]=e^{-cs}F(s) \qquad\qquad|\qquad\qquad F(s)=\mathscr{L}[~f(x)~]

Para la inversa:

L1[ ecsF(s) ]=u(xc) f(xc)={0      x<cf(xc)xc\mathscr{L}^{-1}[~e^{-cs}F(s)~]= u(x-c)~f(x-c)= \left\lbrace \begin{align*} 0~~~~~~ \qquad&x<c \\ f(x-c) \qquad&x\geq c \end{align*}\right.

Ejercicios

  1. Calcular:

    L[ett2]\mathscr{L}[ e^t*t^2]

    Utilice convolución, luego el teorema

Solución 🎁
  • Para la convolución

    ett2=t2et=0t(x2)(etx)dx=0tx2etexdx=et0texx2dx\begin{align*} e^t*t^2 &=t^2*e^t\\ &=\int_0^t (x^2)(e^{t-x}) \, dx\\ &=\int_0^t x^2 e^t e^{-x} \, dx\\ &=e^t \int_0^t e^{-x} x^2 \, dx \end{align*}
  • integrando por partes

    udv=uvvdu\int u \, dv=u v-\int v \, du exx2dx=(x2)(ex)(ex)(2x dx)\int e^{-x} x^2 \, dx= (x^2)(-e^{-x})-\int (-e^{-x})(2x~dx)
x2(etx)0t+(2et)0texxdxx^2 \left(-e^{t-x}\right)\Big|_{0}^t+\left(2 e^t\right) \int_0^t e^{-x} x \, dx
x2(etx)0t=(ettt2)(02(et0))=t2x^2 \left(-e^{t-x}\right)\Big|_{0}^t=(-e^{t-t}t^2)-(0^2(-e^{t-0}))=-t^2
t2+(2et)0texxdx-t^2+\left(2 e^t\right) \int_0^t e^{-x} x \, dx
exdx=(x)(ex)(ex)(dx)\int e^{-x} \, dx= (x)(-e^{-x})-\int (-e^{-x})(dx)
t2+(2xetx)0t+2et0texdx-t^2+ (-2 xe^{t-x}) \Big|_{0}^t + 2e^t\int_0^t e^{-x} \, dx
(2xetx)0t=(2tett)(2(0)et0)=2t(-2 xe^{t-x}) \Big|_{0}^t =(-2 te^{t-t})-(-2(0)e^{t-0})=-2t
t22t+2et0texdx-t^2-2t + 2e^t\int_0^t e^{-x} \, dx
t22t+(2etx)0t-t^2-2t + (2e^{t-x})\Big|_{0}^t
t22t+(2et2)-t^2-2t + (2e^{t}-2)
  • Laplace

    L[t22t2+2et]\mathscr{L}[-t^2-2t-2 + 2e^{t}]
L[t2]2L[t]L[2]+2L[et]-\mathscr{L}[t^2]-2\mathscr{L}[t]-\mathscr{L}[2] + 2\mathscr{L}[e^{t}]
2s32s22s+2s1-\frac{2}{s^3}-\frac{2}{s^2}-\frac{2}{s}+\frac{2}{s-1}
2s32s22s+2s1=2(s1)2s(s1)2s2(s1)+2s3s3(s1)=2s3(s1)-\frac{2}{s^3}-\frac{2}{s^2}-\frac{2}{s}+\frac{2}{s-1} =\frac{-2(s-1)-2s(s-1)-2s^2(s-1)+2s^3}{s^3(s-1)}=\frac{2}{s^3(s-1)}
  • Por el teorema de la convolución:

    L[ett2]=L[et] L[t2]\mathscr{L}[ e^t*t^2]=\mathscr{L}[e^t]~\mathscr{L}[t^2]
L[et] L[t2]=1s12s3=2s3(s1)\mathscr{L}[e^t]~\mathscr{L}[t^2] =\frac{1}{s-1}\cdot \frac{2}{s^3} =\frac{2}{s^3(s-1)}
  1. Encontrar:

    f(x)g(x)Cuandof(x)=e3xg(x)=e2xf(x)*g(x)\quad\text{Cuando}\quad f(x)=e^{3x} \quad\land\quad g(x)=e^{2x}
Solución 🎁
  • Se tiene que:

    f(t)=e3tg(xt)=e2(xt)f(t)=e^{3t} \quad\land\quad g(x-t)=e^{2(x-t)}
  • Finalmente:

    e3xe2xe^{3x}-e^{2x}
  1. Encontrar:

    L1[ 1s25s+6 ]\mathscr{L}^{-1}\left[~\frac{1}{s^2-5s+6}~\right]

    Usar convoluciones

Solución 🎁
  • Se tiene:

    1s25s+6=1(s3)(s2)=1s31s2\frac{1}{s^2-5s+6}=\frac{1}{(s-3)(s-2)}=\frac{1}{s-3}\cdot\frac{1}{s-2}
  • Entonces:

    L1[ 1s25s+6 ]=f(x)g(x)=e3xe2x\mathscr{L}^{-1}\left[~\frac{1}{s^2-5s+6}~\right]=f(x)*g(x)=e^{3x}*e^{2x}
  • Finalmente:

    e3xe2xe^{3x}-e^{2x}
  1. Graficar:

    f(x)=u(x2)u(x3)f(x)=u(x-2)-u(x-3)
Solución 🎁
  • Se tiene:

    u(x2)={0x<21x2u(x-2)= \left\lbrace \begin{align*} 0 \qquad&x<2 \\ 1 \qquad&x\geq 2 \end{align*}\right. u(x3)={0x<31x3u(x-3)= \left\lbrace \begin{align*} 0 \qquad&x<3 \\ 1 \qquad&x\geq 3 \end{align*}\right.
  • Entonces:

    f(x)=u(x2)u(x3)={00=0x<210=12x<311=0x3f(x)=u(x-2)-u(x-3)= \left\lbrace \begin{align*} 0-0=0 \qquad&x<2 \\ 1-0=1 \qquad&2\geq x<3\\ 1-1=0 \qquad&x\geq 3 \\ \end{align*}\right.
  1. Graficar:

    f(x)=55u(x8)x0f(x)=5-5u(x-8) \qquad\qquad|\qquad\qquad x\geq0
Solución 🎁
  • Se tiene:

    5u(x8)={0x<85x85u(x-8)= \left\lbrace \begin{align*} 0 \qquad&x<8 \\ 5 \qquad&x\geq 8 \end{align*}\right. 5={5x<85x85= \left\lbrace \begin{align*} 5 \qquad&x<8 \\ 5 \qquad&x\geq 8 \end{align*}\right.
  1. Encontrar L[ g(x) ]\mathscr{L}[~g(x)~]:

    g(x)={0       x<4(x4)2x4g(x)= \left\lbrace \begin{align*} 0~~~~~~~ \qquad&x<4 \\ (x-4)^2 \qquad&x\geq 4 \end{align*}\right.
Solución 🎁
  • Se define:

    f(x)=x2f(x)=x^2
g(x)=u(x4) f(x4)=u(x4)(x4)2g(x)=u(x-4)~f(x-4)=u(x-4)(x-4)^2
L[ f(x) ]=F(s)\mathscr{L}[~f(x)~]=F(s)
L[ f(x) ]=F(s)=2s3\mathscr{L}[~f(x)~]=F(s)=\frac{2}{s^3}
L[ g(x) ]=L[ u(x4)(x4)2 ]\mathscr{L}[~g(x)~]=\mathscr{L}[~u(x-4)(x-4)^2 ~]
L[ g(x) ]=L[ u(x4)(x4)2 ]=e4s2s3\mathscr{L}[~g(x)~]=\mathscr{L}[~u(x-4)(x-4)^2 ~]=e^{-4s}\frac{2}{s^3}